Home
Class 12
MATHS
int(dx)/(x^(n)(1+x^(n))^((1)/(n)))...

int(dx)/(x^(n)(1+x^(n))^((1)/(n)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(dx)/(x^(2)(x^(n)+1)^((n-1)/(n)))=-(f(x))^((1)/(n))+C then f(x) is (A)1+x^(n)(B)1+x^(-n)(C)x^(n)+x^(-n)(D)x^(n)-x^(-n)

if int(dx)/(x^(2)(x^(n)+1)^(((n-1)/(n))))=-[f(x)]^((1)/(n))+c,thenf(x)is(a)(1+x^(n))(b)1+x^(-1)(c)x^(n)+x^(-n)(d) none of these

int(dx)/(x(x^(n)+1))

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

Prove that int(dx)/((1+x^(2))^(n))=(1)/(2(n-1))[(x)/((1+x^(2))^(n-1))+(2n-3)int(dx)/((1+x^(2))^(n-1))],n in N Hence,computer the value of int cos^(4)xdx