Home
Class 11
PHYSICS
|vec(a)|=2,|vec(b)|=3,|vec(c)|=6 . Angle...

`|vec(a)|=2,|vec(b)|=3,|vec(c)|=6` . Angle between `vec(a)` and `vec(b),vec(b)` and `vec(c)` and `vec(c)` and `vec(a)` is `120^(@)` each, find `|vec(a)+vec(b)+vec(c)|`?

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the vector sum \(|\vec{a} + \vec{b} + \vec{c}|\), we can use the formula for the magnitude of the sum of vectors: \[ |\vec{a} + \vec{b} + \vec{c}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})} \] ### Step 1: Calculate the magnitudes squared Given: - \(|\vec{a}| = 2\) - \(|\vec{b}| = 3\) - \(|\vec{c}| = 6\) We calculate: \[ |\vec{a}|^2 = 2^2 = 4 \] \[ |\vec{b}|^2 = 3^2 = 9 \] \[ |\vec{c}|^2 = 6^2 = 36 \] ### Step 2: Sum the squares of the magnitudes Now we can sum these values: \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 = 4 + 9 + 36 = 49 \] ### Step 3: Calculate the dot products Next, we need to calculate the dot products. The angle between each pair of vectors is \(120^\circ\), and we know: \[ \cos(120^\circ) = -\frac{1}{2} \] Now we calculate each dot product: 1. \(\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(120^\circ) = 2 \cdot 3 \cdot \left(-\frac{1}{2}\right) = -3\) 2. \(\vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos(120^\circ) = 3 \cdot 6 \cdot \left(-\frac{1}{2}\right) = -9\) 3. \(\vec{c} \cdot \vec{a} = |\vec{c}| |\vec{a}| \cos(120^\circ) = 6 \cdot 2 \cdot \left(-\frac{1}{2}\right) = -6\) ### Step 4: Sum the dot products Now we sum the dot products: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -3 - 9 - 6 = -18 \] ### Step 5: Substitute into the magnitude formula Now we substitute everything back into the formula: \[ |\vec{a} + \vec{b} + \vec{c}| = \sqrt{49 + 2(-18)} \] \[ = \sqrt{49 - 36} = \sqrt{13} \] ### Final Answer Thus, the magnitude of \(|\vec{a} + \vec{b} + \vec{c}|\) is: \[ \sqrt{13} \]

To find the magnitude of the vector sum \(|\vec{a} + \vec{b} + \vec{c}|\), we can use the formula for the magnitude of the sum of vectors: \[ |\vec{a} + \vec{b} + \vec{c}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})} \] ### Step 1: Calculate the magnitudes squared Given: ...
Promotional Banner

Topper's Solved these Questions

  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise Exercise|10 Videos
  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise EXERCISE - 2 [MATRIX TYPE]|1 Videos
  • KINETIC THEORY OF GASES

    BANSAL|Exercise Section-B|13 Videos

Similar Questions

Explore conceptually related problems

Let vec a,vec b,vec c are the three vectors such that |vec a|=|vec b|=|vec c|=2 and angle between vec a and vec b is (pi)/(3),vec b and vec c and (pi)/(3) and vec a and vec c(pi)/(3). If vec a,vec b and vec c are sides of parallelogram

If vec(a)=vec(b)+vec(c ) , then |vec(a)|=|vec(b)+vec(c )| .

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is vec(a). vec(b) + vec(b).vec(c)+ vec(c). vec(a) . equal to ?

If vec(a),vec(b) and vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=2,|vec(b)|=3 and |vec(c )|=5 , then the value of vec(a)*vec(b)+vec(b)*vec(c)+vec(c)*vec(a) is

If vec(a), vec(b) and vec(c ) are mutually perpendicular unit vectors and vec(a)xx vec(b)=vec(c ) , show that vec(b)=vec(c )xx vec(a) and vec(a)=vec(b)xx vec(c ) .

If |vec a|=3,|vec b|=5,|vec c|=7 and vec a+vec b+vec c=0 then angle between vec a and vec b is

If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=3, |vec(b)| =4 and |vec(c )|=5 , then show that vec(a).vec(b)+vec(b).vec(c )+vec(c ). vec(a)=-25 .

If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec(b) + vec(c )=0 and |vec(a)|=3, |vec(b)|=5,|vec(C )|=7 , find the angle between vec(a) and vec(b) .

If vec(a) , vec(b), vec(c) are unit vectors such that vec(a) is perpendicular to the plane of vec(b), vec(c) , and the angle between vec(b) and vec(c) is (pi)/(3) Then, what is |vec(a)+vec(b)+vec(c)| ?

BANSAL-UNIT DIMENSION, VECTOR & BASIC MATHS-EXERCISE - 3 (Miscellaneous Exercise)
  1. The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k...

    Text Solution

    |

  2. A plumber steps out of his truck, walks 60m east and 35m south and the...

    Text Solution

    |

  3. Find the resultant of the three vectors shown in figure (2W1). .

    Text Solution

    |

  4. If vec(a)=x(1)hat(i)+y(1)hat(j) & vec(b)=x(2)hat(i)+y(2)hat(j). The co...

    Text Solution

    |

  5. A bird moves from point (1, -2) to (4, 2) . If the speed of the bird i...

    Text Solution

    |

  6. vec(A)+vec(B)=2hat(i) and vec(A)- vec(B)=4hat(j) then angle between v...

    Text Solution

    |

  7. Given the vectors vec(A)=2hat(i)+3hat(j)-hat(k) vec(B)=3hat(i)-2h...

    Text Solution

    |

  8. A body constrained to move in y direction is subjected to a force give...

    Text Solution

    |

  9. If the resultant of two forces of magnitudes P and Q acting at a point...

    Text Solution

    |

  10. If the resultant of two forces of magnitudes p and 2p is perpendicular...

    Text Solution

    |

  11. Given that vec(a)=vec(i)+vec(j) +vec(k), vec(b)=vec(i)-vec(j)+vec(k), ...

    Text Solution

    |

  12. |vec(a)|=2,|vec(b)|=3,|vec(c)|=6 . Angle between vec(a) and vec(b),vec...

    Text Solution

    |

  13. The magnitude of the vector hat(i)+xhat(j)+3hat(k) is half of the magn...

    Text Solution

    |

  14. The resultant of two forces , one double the other in magnitude is pe...

    Text Solution

    |

  15. Two vectors vec(A) & vec(B) are given such that angle between (vec(A)+...

    Text Solution

    |

  16. Find the magnitude of the unknown forces if sum of all forces is zero.

    Text Solution

    |

  17. Three boys are pulling a heavy trolley by means of 3 ropes. The boy in...

    Text Solution

    |

  18. A particle is displaced from A=(2,2,4) to B=(5, -3,-1) . A constant fo...

    Text Solution

    |

  19. A force vec(F)=3hat(i)+chat(j) +2hat(k) acting on a particle causes a ...

    Text Solution

    |

  20. A mosquito net over a 7ftxx4 ft bed is 3 fthigh. The net has a hole at...

    Text Solution

    |