Home
Class 12
MATHS
(d)/(dx)(tan^(-1)(sqrt(1+x^(2))-1)/(x))=...

(d)/(dx)(tan^(-1)(sqrt(1+x^(2))-1)/(x))=

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)sqrt(1+x^(2))-cot^(-1)(-sqrt(1+x^(2)))]=

d/(dx) [tan^(-1)(sqrt(x))] =

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

(d)/(dx) {Tan ^(-1) ""(sqrt (( x ^(2))/(a ^(2) -x ^(2))))}=

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t tan^(-1)x , where x ne 0