Home
Class 12
MATHS
Lt(x->3)(1/(x-3)int3^x e^t dt)=...

`Lt_(x->3)(1/(x-3)int_3^x e^t dt)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

{:(" "Lt),(x rarr 3):} (1)/(x-3) int_(3)^(x)e^(t)dt=

Lt_(x to oo) ((int_(0)^(x) e^(t) dt)^(2))/(int_(0)^(x)e^(2t^(2))dt)

What is F^1(x) if F(x)= int_0^x e^(2t)sin 3t dt

Prove that int_0^x e^(x t)e^-t^2dt=e^(x^(2)/4)int_0^x e^-(t^(2)/4)dt

int_(0)^(ln3)(e^(x)+x)f(x)+(e^(x)+1)int_(0)^(x)f(t)dt=p(q+ln3)t then find the value of (p+q)

{:(" " Lt),(x rarr0):}(int_(0)^(x) sin^(3) t dt)/(x^(4))=

Let f(x)=(e^x+1)/(e^x-1) and int_0^1x^3*(e^x+1)/(e^x-1)dx=alpha. Then int_-1^1 t^3f(t) dt is equal to