Home
Class 12
MATHS
Show that: (x^2+y^2)^5=(x^5-10x^3y^2+5x...

Show that: ` (x^2+y^2)^5=(x^5-10x^3y^2+5xy^4)^2+(5x^4-10x^2y^3+y^5)^2 `

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: (x^2+y^2)^5=(x^5-10x^3y^2+5xy^4)^2+(5x^4 y-10x^2y^3+y^5)^2

Show that: (x^(2)+y^(2))^(5)=(x^(5)-10x^(3)y^(2)+5xy^(4))^(2)+(5x^(4)-10x^(2)y^(3)+y^(5))^(2)

Add: 4x^2y,-3xy^2,5xy^2,5x^2y

Add: 4x^2y, – 3xy^2, –5xy^2, 5x^2y

Add (2x^2+5xy+2y^2), (3x^2-2xy+5y^2) and (-2x^2+8xy+3y^2)

Add : 4x^(2)y, - 3xy^(2), -5xy^(2), 5x^(2)y

Simplify : (2x+y)^(5)-5y(2x+y)^(4)+10y^(2)(2x+y)^(3)-10y^(3)(2x+y)^(2)+5y^(4)(2x+y)-y^(5)

If (4x^2-3y^2):(2x^2+5y^2)=12:19 then x:y=

Solve:- frac(2y^9x^5)(5x^2) xx frac(125xy^5)(16x^4y^10)

x^2\ x\ \ 2y^3\ x\ \ 5x^3y^2 is equal to: (a) 10 x^2y^5 (b) 10 x^5y^2 (c) 10 x^5y^5 (d) x^5y^5