Home
Class 11
MATHS
Prove that :16 cos 2pi/15 cos 4pi/15 cos...

Prove that :`16 cos 2pi/15 cos 4pi/15 cos 8pi/15 cos16pi/15 = 1`

Text Solution

Verified by Experts

Here, we will use,
`2sinxcosx = sin2x`
Now,
`L.H.S. = 16cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)cos((16pi)/15)`
`=16cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)cos(pi+pi/15)`
`=16cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)(-cos(pi/15))`
`=-16cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)`
`=8/sin(pi/15)*2sin(pi/15)cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove cos2pi/15cos4pi/15cos8pi/15cos16pi/15=1/16

Prove that, 16 "cos" (2pi)/15 "cos" (4pi)/15 "cos" (8pi)/15 "cos" (16pi)/15 =1

Prove that cos(2pi)/(15)cos(4pi)/(15)cos(8pi)/(15)cos(14pi)/(15)=1/(16)

Prove that cos(2pi)/(15)cos(4pi)/(15)cos(8pi)/(15)cos(14pi)/(15)=1/(16)

Prove that cos(2 pi)/(15)cos(4 pi)/(15)cos(8 pi)/(15)cos(14 pi)/(15)=(1)/(16)

Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1/(16)

Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1/(16)

Prove that cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((14pi)/(15))=1/(16)

Prove that cos "" (2pi)/(15) cos "" (4pi)/(15) cos "" (8pi)/(15) cos "" (14pi)/(15) = (1)/(16).

Show that 16cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((16pi)/(15))=1