Home
Class 12
MATHS
Let vec a ,\ vec b ,\ vec c be three ...

Let ` vec a ,\ vec b ,\ vec c` be three unit vectors such that `| vec a+ vec b+ vec c|=1\ a n d\ vec a` is perpendicular to ` vec bdot` If ` vec c` makes angle `alpha` and `beta` with ` vec a\ a n d\ vec b` respectively, then `cosalpha+cosbeta=` `-3/2` b. `3/2` c. `1` d. `-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a,vec b,vec c be three unit vectors such that |vec a+vec b+vec c|=1 and vec a is perpendicular to vec b. if vec c makes angle alpha and beta with vec a and vec b respectively,then cos alpha+cos beta=

Let vec a,vec b,vec c be three unit vectors such that |vec a+vec b+vec c|=1 and vec a is perpendicular to vec b* If vec c makes angle alpha and beta with vec a and vec b respectively,then cos alpha+cos beta=-(3)/(2) b.(3)/(2) c.1 d.-1

Let vec a , vec b , vec c be three unit vectors such that | vec a+ vec b+ vec c| = 1 and vec a_|_ vec bdot If vec c makes angles alpha,beta with vec a , vec b respectively then cosalpha+cosbeta is equal to (a) 3/2 (b) 1 (c) -1 (d) None of these

Let vec a,vec b,vec c be three unit vectors such that |vec a+vec b+vec c| and vec a perpvec b. If vec c makes angles alpha,beta with vec a,vec b respectively then cos alpha+cos beta is equal to (3)/(2)(b)1(c)-1(d) None of these

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec adot vec x=1, vec bdot vec x=3/2,| vec x|=2. Then find the angel between c and x dot

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec a dot vec x=1, vec b dot vec x=3/2,| vec x|=2. Then find the angle between vec c and vec x

Let vec a = i-j, vec b = j-k, vec c = k-i . If vec d is a unit vectors such that vec a. vec d = 0 = [vec b vec c vec d] , then vec d =

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of | vec a+ vec b+ vec c |