Home
Class 12
MATHS
If A + B + C = pi and tanA = 1, tanB = 2...

If A + B + C = `pi` and tanA = 1, tanB = 2, then `cotC/(cotAcotB+cotBcotC+cotCcotA)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If Agt=0,B=0,A + B = pi/3 and y = tanA.tanB , then :

If in a Delta ABC ,tanA+tanB+tanC=6, then cotA cotB cotC=

If A,B,C are the angles of DeltaABC then cotA.cotB+cotB.cotC+cotC.cotA=

If A-B = pi/4 , then (1+tanA)(1-tanB)=

If A-B = pi/4 , then (1+tanA)(1-tanB)=

If (1+tanA)(1+tanB)=2 , then tan(A+B)=

If 2tanA = 3tanB = 1, then what is tan(A-B) equal to?

In DeltaABC , prove that: cotBcotC+cotCcotA+cotAcotB=1