Home
Class 12
MATHS
मान लीजिए veca और vecb दो मात्रक सदिश ह...

मान लीजिए `veca` और `vecb` दो मात्रक सदिश हैं और उनके बीच का कोण `theta` है तो `veca + vecb` एक मात्रक सदिश है यदिः
(A) `theta = (pi)/(2)` (B) `theta = (pi)/(3)` (C) `theta = (pi)/(2)` (D) `theta = (2pi)/(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If pi < theta<(3pi)/2' then theta lies in

sin ((pi) / (2) + theta) * cos ((3 pi) / (2) + theta) * tan ((5 pi) / (2) + theta) * cot ((7 pi) / (2) ) + theta)

cos ((3pi)/(2)+theta) cos (2pi+theta) xx [ cot ((3pi)/(2) -theta) + cot (2pi + theta) ] = ?

int_(pi//4) ^(pi//2) (cos theta)/((cos (theta/2) + sin (theta/2))^(3))d theta=

Let -> a and -> b be two unit vectors and is the angle between them. Then -> a+ -> b is a unit vector if (A) theta=pi/4 (B) theta=pi/3 (C) theta=pi/2 (D) theta=(2pi)/3

Let -> a and -> b be two unit vectors and is the angle between them. Then -> a+ -> b is a unit vector if(A) theta=pi/4 (B) theta=pi/3 (C) theta=pi/2 (D) theta=(2pi)/3

If theta is the angle between two vectors veca and vecb , then veca* vecb ge 0 only when (A)0 lt theta lt pi/2 (B) 0lt=theta lt=pi/2 (C)0 lt theta lt pi (D)0 lt=theta lt=pi

A ={ theta : 2cos^2 theta + sintheta <=2} , and B = {theta: pi/2<=theta<= (3pi)/2} then (A∩B) is

If veca,vecb,vecc be three that unit vectors such that vecaxx(vecbxxvecc)=1/2 vecb, vecb and vecc veing non parallel. If theta_1 is the angle between veca and vecb and theta_2 is the angle between veca and vecb then (A) theta_1 = pi/6, theta_2=pi/3 (B) theta_1 = pi/3, theta_2=pi/6 (C) theta_1 = pi/2, theta_2=pi/3 (D) theta_1 = pi/3, theta_2=pi/2

sin""((pi)/2+ theta ) * cos (pi- theta ) * cot ""((3pi)/(2)+ theta ) - sin""((pi)/2- theta ) * sin""((3pi)/2 - theta ) * cot ""((pi)/2 + theta ) =