Home
Class 12
MATHS
Prove that tan^-1(1/7)+tan^-1(1/13)=tan^...

Prove that `tan^-1(1/7)+tan^-1(1/13)=tan^-1(2/9)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 2 tan^-1(1/7) + tan^-1(1/3) = tan^-1(9/13)

Prove that: tan^(-1)(1/2)+tan^(-1)(1/5)=tan^(-1)(7/9)

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

Prove that 2 tan^-1(1/2) + tan^-1 (1/7) = tan^-1 (31/17) .

Prove that : tan^-1(1/3) + tan^-1(1/5) + tan^-1(1/7) + tan^-1(1/8) = pi/4

Prove that 2 tan^-1 (1/2) + tan^-1 (1/9) = tan ^-1 (39/23)

Prove that : 2tan^-1 (1/2) + tan^-1 (1/7) = tan^-1 (31/17)

Prove that: tan^-1 (1/3)+tan^-1 (2/9)+tan^-1 (4/33)+… tooo= pi/4