Home
Class 12
MATHS
Let veda,vecb,vecc be three noncolanar v...

Let `veda,vecb,vecc` be three noncolanar vectors and `vecp,vecq,vecr` are vectors defined by the relations `vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxvecca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc])` then the value of the expression `(veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr`. is equal to (A) 0 (B) 1 (C) 2 (D) 3

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr be the vectors defined by the relations. vecp=(vecbxxvecc)/([(veca, vecb, vecc)]),vecq=(veccxxveca)/([(veca, vecb, vecc)]),vecr=(veccxxveca)/([(veca,vecb,vecc)]) Then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr is equal to

If veca , vecb and vecc are three non-coplanar vectors and vecp , vecq and vecr are vectors defined by vecp = (vecb xx vecc)/([veca vecb vecc]) , vecq = (vecc xx veca)/([veca vecb vecc]) and vecr = (veca xx vec b)/([veca vecb vec c]) , then the value of (veca + vecb) * (vecb + vecc) * vecq + (vecc + vec a) * vecr =

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

If vecA=(vecbxxvecc)/([vecb vecc vecc]), vecB=(veccxxveca)/([vecc veca vecb)], vecC=(vecaxxvecb)/([veca vecb vecc)] find [vecA vecB vecC]

If veca , vecb , vecc are three non-coplanar vector and vecp , vecq vecr are defind by the relations vecp=(vecbxxvecc)/([vecavecbvecc]) , vecq=(veccxxveca)/([vecavecbvecc]) , vecr=(vecaxxvecb)/([vecavecbvecc]) , then vecp.(veca+vecb)+vecq.(vecb+vecc)+vecr.(vecc+veca) =............

Let veca,vecb,vecc be non coplanar vectors and vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxvecq)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) . What is the vaue of (veca-vecb-vecc).vecp(vecb-vecc-veca).vecq+(vecc-veca-vecb).vecr? (A) 0 (B) -3 (C) 3 (D) -9

Let veca,vecb,vecc be non coplanar vectors and vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) . What is the vaue of (veca-vecb-vecc).vecp+(vecb-vecc-veca).vecq+(vecc-veca-vecb).vecr? (A) 0 (B) -3 (C) 3 (D) -9