Home
Class 9
MATHS
(vi)[(1)/(4)a-(1)/(2)b+1]^(2)...

(vi)[(1)/(4)a-(1)/(2)b+1]^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

{:("Quantity A","Quantity B"),((1)/((1)/(2)+(1)/(4)+(1)/(8)),(1)/(2)+(1)/(4)+(1)/(8)):}

Expand each of the following, using suitable identities: (i) (x+2y+4z)^2 (ii) (2x-y+z)^2 (iii) (-2x+3y+2z)^2 (iv) (3a-7b-c)^2 (v) (-2x+5y-3z)^2 (vi) [1/4a-1/2b+1]^2

Expand each of the following, using suitable identities: (i) (x+2y+4z)^2 (ii) (2x-y+z)^2 (iii) (-2x+3y+2z)^2 (iv) (3a-7b-c)^2 (v) (-2x+5y-3z)^2 (vi) [1/4a-1/2b+1]^2

Prove that: tan^(-1){(pi)/(4)+(1)/(2)(cos^(-1)a)/(b)}+tan{(pi)/(4)-(1)/(2)(cos^(-1)a)/(b)}=(2b)/(a)

Expand each of the following , using suitable identities : (i) (x+2y+4z)^2 (ii) (2x-y+z)^2 (iii) (-2x+3y+2z)^2 (iv) (3a-7b-c)^2 (v) (-2x+5y-3z)^2 (vi) (1/4a-1/2b+1)^2

Expand : (vi) (2a - (1)/(a) )^2

If A=[(1,3),(2,4)] and (AB)^(-1)=[((-1)/(2),(1)/(2)),((1)/(4),0)] , then B^(-1). A^(-1)=

If A=[(1,3),(2,4)] and (AB)^(-1)=[((-1)/(2),(1)/(2)),((1)/(4),0)] , then B^(-1). A^(-1)=

|[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1)^(2), (c+1)^(2)], [(a-1)^(2), (b-1)^(2), (c-1)^(2)]| =-4(a-b)(b-c)(c-a)

If a:b:c=2:3:4, then (1)/(a):(1)/(b):(1)/(c) is equal to (1)/(4):(1)/(3):(1)/(2) b.4:3:2 c.6:4:3 d.none of these