Home
Class 12
MATHS
" 4.Find the sum of the series "sum(r=0)...

" 4.Find the sum of the series "sum_(r=0)^(n-1)(^nC_(r))/(^nC_(r)+^(n)C_(r+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(n-1)(nC_(r))/(nC_(r)+^(n)C_(r+1)) is eqaul to

If sum_(r=0)^(n-1)((^nC_(r))/(nC_(r)+^(n)C_(r+1)))^(3)=(4)/(5) then n=

Find the sum of sum_(r=1)^(n)(r^(n)C_(r))/(^nC_(r-1))

If sum_(r=0)^(n-1)(("^nC_r)/(^nC_r+^nC_(r+1)))^3=4/5 then n=

Find the sum sum_(r=1)^(n)r^(2)(^nC_(r))/(n_(C_(r-1)))

sum_(r=1)^(10) r. (""^nC_r)/(""^nC_(r-1)) =

The sum of the series sum_(r=1)^(n)(-1)^(r-1)*nC_(r)(a-r) is equal to :

Find the sum sum_(r=1)^n r^n (^nC_r)/(^nC_(r-1)) .

Find the sum sum_(r=1)^n r^n (^nC_r)/(^nC_(r-1)) .

Prove that sum_(r=0)^(n)nC_(r)3^(r)=4^(n)