Home
Class 12
MATHS
cos^(-1)(3)/(5)-sin^(-1)(4)/(5)=cos^(-1)...

cos^(-1)(3)/(5)-sin^(-1)(4)/(5)=cos^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

cos[2cos^(-1).(1)/(5)+sin^(-1).(1)/(5)] =

If "tan"^(-1)(x+1)+cot^(-1)(x-1)="sin"^(-1) (4/5) + cos^(-1) (3/5) , then x has the value:

cos[2cos^(-1)((1)/(5))+sin^(-1)((1)/(5))] =

Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi

sin(cos^(-1)(4/5))

cos [2"cos"^(-1) (1)/(5) + "sin"^(-1) (1)/(5)]=

Evaluate : cos[sin^(-1)""(3)/(5)+sin^(-1)""(5)/(13)]

Prove that: sin^(-1)(-4/5)=tan^(-1)(-4/3)=cos^(-1)(-3/5)-pi

tan [sin ^(-1)((3)/(5))-cos ^(-1)(-(4)/(5))]=

sin((1)/(2)"cos"^(-1)(4)/(5))=