Home
Class 11
MATHS
(" Illustration "5.34" Prove that "quad ...

(" Illustration "5.34" Prove that "quad x^(2)=(sqrt(1+x)+sqrt(1-x)))/(2)}=(pi)/(4)+(sin^(-1)x)/(2),0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/(2)}=(pi)/(4)+(sin^(-1)x)/(2),0

Prove that sin^(-1) {(sqrt(1 + x) + sqrt(1 - x))/(2)} = (pi)/(4) + (cos^(-1) x)/(2), 0 lt x lt 1

Prove that sin^(-1) {(sqrt(1 + x) + sqrt(1 - x))/(2)} = (pi)/(4) + (cos^(-1) x)/(2), 0 lt x lt 1

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/2}=pi/2-(sin^(-1)x)/2,""0 < x < 1

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/2}=pi/4+(cos^(-1)x)/2,""0 < x < 1

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/2}=pi/4+(cos^(-1)x)/2,""0 < x < 1

Prove that int_(0)^(1) log(sqrt(1-x)+sqrt(1+x))dx = (1)/(2) log 2 + (pi)/(4) - (1)/(2)

Prove that sin^(-1)x+sin^(-1)sqrt(1-x^(2))=(pi)/(2)

Prove that : int_0^(pi/2)sqrt(1-sin2x)dx=2(sqrt(2)-1)