Home
Class 12
MATHS
If lim(x to 0) (cos x + a^(3)sin(b^(6)x)...

If `lim_(x to 0) (cos x + a^(3)sin(b^(6)x))^(1//x)=e^(512)`, then the value of `ab^(2)` is equal to

A

`-512`

B

512

C

8

D

`16sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

`= e^(lim_(x to 0)(cos x + a^(3)sin(b^(6)x)-1)x(1)/(x))`
`= e^(lim_(x to 0)-(sin x+a^(3)cos(b^(6)x).b^(6))/(1))`
`= e^(a^(3)b^(6))`
`therefore a^(3)b^(6)=512 rArr ab^(2)=8`
Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr0)(cos x+a^(3)sin(b^(6)x))^((1)/(x))=e^((5)/(2))=e^(512) then the value ab^(2) is equal to

If lim_(x to 0) (x(1 + a cos x)-b sinx)/(x^3) = 1 , then the value of ab is euqal to

If lim_(x rarr0)(cos x+a sin bx)^((1)/(x))=e^(2), then (a,b) is equal to

If lim_(xto0) (sin 2x+asinx)/x^3=b then the value of b-2a is equal to

lim_(x to 0) (cos (sin x) - 1)/(x^2) equals :

The value of lim_(xrarr0)((1)/(x^(18)))1-cos((x^(3))/(3))-cos((x^(6))/(6))+cos((x^(3))/(3)).cos((x^(6))/(6))) lambda^(2) , then the value of 900lambda is equal to ("here, "lambda gt 0)

If lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(3x^(3)) is equal to L ,then the value of (6L+1) is: