Home
Class 12
MATHS
The value of the integral int(0)^(1)xcot...

The value of the integral `int_(0)^(1)xcot^(-1)(1-x^(2)+x^(4))dx` is

A

`(pi)/(4)-(1)/(2)log_(e )2`

B

`(pi)/(2)-log_(e )2`

C

`(pi)/(2)-(1)/(2)log_(e )2`

D

`(pi)/(4)-log_(e )2`

Text Solution

Verified by Experts

The correct Answer is:
A

`I=int_(0)^(1)cot^(-1)(1-x^(2)+x^(4))dx`
`I=int_(0)^(1)x tan^(-1)((1)/(1-x^(2)+x^(4)))dx`
Let
`x^(2)=t`
`2xdx = dt`
`=int_(0)^(1)tan^(-1)((1)/(1-t+t^(2))).(dt)/(2)`
`=(-1)/(2)int_(0)^(1)tan^(-1)(((t-1)-t)/(1-t(t-1)))dt`
`I=-(1)/(2)int_(0)^(1)(tan^(-1)(t-1)-tan^(-1)t)dt " "` ........(1)
By prop `4 int_(0)^(1)f(x)dn=int_(0)^(a)f(a-x)dx`
`I=-(1)/(2)int_(0)^(1)(-tan^(-1)t-tan^(-1)(t-1))dt " "` ....... (2)
Adding `1 + 2 rArr 2I = int_(0)^(1)(tan^(-1)t-tan^(-1)(t-1))dt`
`2I=int_(0)^(1)tan^(-1)tdt + int_(0)^(1)tan^(-1)dt`
`therefore I = int_(0)^(1)1_(II).tan_(I)^(-1)+dt`
`I=(tan^(-1)t.t)_(0)^(1)-int_(0)^(1)(1)/(1+t^(2)).tdt`
`I=(pi)/(4)-(1)/(2)[ln(1+t^(2))]_(0)^(1)`
`I=(pi)/(4)-(1)/(2)ln2`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is

The value of the integral int_(0)^(2)|x^(2)-1|dx is

The value of the integral int_(0)^(1) (1)/((1+x^(2))^(3//2))dx is

The value of the integral int_(0)^(1)(1)/((1+x^(2))^((3)/(2)))dx is

The value of the integral int_(0)^(1)(x^(3))/(1+x^(8))dx is

The value of the integral l = int_(0)^(1) x(1-x)^(n) dx is