Home
Class 12
MATHS
The value of the integral int0^(log5)(e^...

The value of the integral `int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx`

A

`3+2pi`

B

`4-pi`

C

`2+pi`

D

`2-pi`

Text Solution

Verified by Experts

The correct Answer is:
B

Put `e^(x)-1=t^(2)`
`I=2.int_(0)^(2)(t^(2))/(t^(2)+4)dt=2(int_(0)^(2)dt - 4int_(0)^(2)(dt)/(t^(2)+4))`
`= 2.[(t-2tan^(-1)((t)/(2)))_(0)^(2)]=2.[2-2((pi)/(4))]`
`= 4 - pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The value of int_0^(log5) (e^xsqrt(e^x-1))/(e^x+3)dx is (A) 3+2pi (B) 4-pi (C) 2+pi (D) none of these

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

The value of the integral int(dx)/((e^(x)+e^(-x))^2) is

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

The value of the integral int_(e^(-1))^(e^(2)) |(log_(e)x)/(x)|dx is

The value of the integral int _(e ^(-1))^(e ^(2))|(ln x )/(x)|dx is: