Home
Class 12
MATHS
If cos x (dy)/(dx)-y sin x = 6x, (0 lt x...

If cos `x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2))` and `y((pi)/(3))=0`, then `y((pi)/(6))` is equal to :-

A

`-(pi^(2))/(4sqrt(3))`

B

`-(pi^(2))/(2)`

C

`-(pi^(2))/(2sqrt(3))`

D

`(pi^(2))/(2sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
C

`(dy)/(dx)-y tan x =(6x)/(cos x)`
(linear in y)
`I.F. = e^(int-tan xdx)=e^(+ln cos x)=cos x`
`y.cos x=int(6x)/(cos x).cos x dx + C`
`y.cos x=3x^(2)+C`
`therefore y(pi//3)=0` Put `x = (pi)/(3)`. & y = 0
`0 = (3pi^(2))/(9)+C to C = - (pi^(2))/(3)`
`therefore y cos x = 3x^(2)-(pi^(2))/(3)`
`y((pi)/(6))= ?` Put `x = (pi)/(6)`
`y.(sqrt(3))/(2)=3.(pi^(2))/(36)-(pi^(2))/(3)=(-pi^(2))/(4)`
`y = (-pi^(2))/(2sqrt(3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let y = y (x) be the solution of the differential equation cos x (dy)/(dx) + 2y sin x = sin 2x , x in (0, pi/2) . If y(pi//3) = 0, " then " y(pi//4) is equal to :

If cosxdy/dx-y sin x=6x, (0ltxltx/2)and y(pi/3)=0 , then y(pi/6) is equal to (a) pi^(2) /(2sqrt 3) (b) -pi^(2) /(2sqrt 3) (c) -pi^(2) /(4sqrt 3) (d) (c) -pi^(2) /2

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to :

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

Let y=y(x) be the solution of the differential equation cos x(3sinx+cosx+3)dy=(1+y sin (3sinx+cosx+3))dx, 0 le x le (pi)/(2), y (0)=0 . Then, y((pi)/(3)) is equal to :

If y(x) satisfies the differential equation cosx (dy)/(dx)-y sin x=6x. And y((pi)/(3))=0. Then value of y((pi)/(6)) is

If (dy)/(dx)+y tan x=sin2x and y(0)=1, then y(pi) is equal to:

If y=y(x) is the solution of the equation e^(sin y) cos y""(dy)/(dx) +e^(sin y) cos x = cos x,y (0)=0, then 1+y ((pi)/(6)) +( sqrt(3))/(2) y((pi)/(3)) +(1)/( sqrt(2)) y((pi)/(4)) is equal to