Home
Class 12
MATHS
The value of lim(x to - pi) (int(0)^(sin...

The value of `lim_(x to - pi) (int_(0)^(sin x)sin^(-1)t dt)/((x+pi)^(2))` is equal to L then find the value of 100 L :

Text Solution

Verified by Experts

The correct Answer is:
`50.00`

`lim_(x to - pi)((sin^(-1)(sin x)).cos x)/(2(x + pi))((0)/(0)"form")`
`= lim_(x to -pi)(-(x+ pi))/(2(x +pi))cos x=(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_( x to 0) (int_(0)^(x) sin t^(2) dt) / x^(2) is

lim_(x to 0) (2 int_(0)^(cosx) cos^(-1) t dt)/( 2x -sin 2x) is equal to

The value of lim_(x rarr0^(+))(int_(1)^(cos x)(cos^(-1)t)dt)/(2x-sin(2x)) is equal to

The value of lim _( x to 0^(+))(int _(1)^(cos x) (cos ^(-1) t )dt)/(2x - sin 2x) is equal to:

The value of lim_(x rarr0)(int_(0)^(x^(2))cos t^(2)dt)/(x sin x) is

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(3x^(3)) is equal to L ,then the value of (6L+1) is:

The value of lim_(xto1^(+))(int_(1)^(x)|t-1|dt)/(sin(x-1)) is