Home
Class 12
MATHS
If f(x) =x + x^(2)/(2!) + x^(3)/(3!) + …...

If f(x) `=x + x^(2)/(2!) + x^(3)/(3!) + ……+x^(n)/((n-1)!)`, then `f(0) + f^(1)(0) + f^(2)(0) +…………+f^(n)(0)` is equal to:

A

`(n(n+1))/2`

B

`(n^(2)+1)/2`

C

`((n(n+1))/2)^(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

We have, `f(x) = x+ x^(2)/(1!) + x^(3)/(2!) + ……..+x^(n)/((n-1)!)`
`f(x) = 1+ (2x)/(1!) + (3x^(2))/(2!) +………..+x^(n)/((n-1)!)`
`f^(2)(x) = 2+ (3.2x)/(2!) +………+(n(n-1)x^(n-2))/((n-1)!)`
`f^(n)(x) = (n!)/((n-1)!)`
`rArr f(0) + f^(1)(0) + f^(2)(0) + ...........+fn(0)`
`=0 + 1+2 + 3 +........n = (n(n+1))/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

if quad f(x)=x+(x^(2))/(1)!+(x^(3))/(3)!+--+(x^(n))/(n)! then f(0)+f'(0)+f''(0)+ is equal to

Let F: (0,2) to R be defined as f (x) = log _(2) (1 + tan ((pix)/(4))). Then lim _( n to oo) (2)/(n) (f ((1)/(n )) + f ((2)/(n)) + …+ f (1) ) is equal to

If f(a+x)=f(x), then int_(0)^(na)f(x)dx is equal to n in N

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

if f(x)=3e^(x^(2)) then f'(x)-2xf(x)+(1)/(3)f(0)-f'(0)

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :