Home
Class 12
MATHS
If int(a^(x)e^(3x))/(b^(x)c^(x))dx = 1/p...

If `int(a^(x)e^(3x))/(b^(x)c^(x))dx = 1/p((a^(x)e^(3x))/(b^(x)c^(x))) + k` then P=

A

`3 log a log(b/c)`

B

`log a + 3- log bc`

C

`log(e^(3)abc)`

D

log b + log c - log a -3

Text Solution

Verified by Experts

The correct Answer is:
B

`int ((ae^(3))/(bc))^(x) dx = ((ae^(3))/(bc))^(x)/(log ((ae^(3))/(bc))) + k`
`therefore P= log((ae^(3))/(bc))`
`=log ae^(3) -log bc`
`=log a + 3- log bc`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(3x)-1)/(e^(x))dx

int(e^(x)(x-3))/((x-1)^(3))dx

int x^(2)e^(3x)dx

(0)int(e^(3x)+1)/(e^(x))dx

int sqrt((e^(3x)-e^(2x))/(e^(x)+1))dx

int(e^(x))/((e^(3x)-3e^(2x)-e^(x)+3))dx

int_(-a)^(a)x^(2)(e^(x^(3))-e^(-x^(3)))/(e^(x^(3))+e^(-x^(3)))dx=

Evaluate: int(e^(3x)+e^(5x))/(e^(x)+e^(-x))dx

int(a)/(b+c.e^(x))dx=

int(e^((1)/(x)))/(x^(3))dx