Home
Class 12
MATHS
If (x(1)-x(2))^(2) + (y(1)-y(2))^(2) =a^...

If `(x_(1)-x_(2))^(2) + (y_(1)-y_(2))^(2) =a^(2), (x_(2)-x_(3))^(2) + (y_(2)-y_(3))^(2) = b^(2), (x_(3)-x_(1))^(2) (y_(3)-y_(1))^(2) =c^(2)` and `|{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|^(2) = (a+b+c)(b+c-a)(c+a-b)(a+b-c)` then the value of `lambda` is:

Text Solution

Verified by Experts

The correct Answer is:
`4.00`

`lambda|{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=(a+b+c)(b+c-a)(c+a-b)(a+b-c)`
`rArr 4lambda Delta^(2) = 16 s(s-a) (s-b)(s-c)`
`rArr 4lambda Delta^(2) = 16 Delta^(2)`
`rArr 4lambda = 16 rArr lambda =4`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2)(x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2)(x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2) and 2s=a+b+c then (1)/(4)det[[x_(2),y_(2),1x_(3),y_(3),1]]^(2)

if (x_(1),x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

If (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=144,(x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=25 and (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=169, then the value of det[[x_(1),y_(1),1x_(2),y_(2),1x_(3),y_(3),1]]^(2) is 30(b)30^(2)(c)60(d)60^(2)

If (x_1-x_2)^2+(y_1-y_2)^2=a^2,(x_2-x_3)^2+(y_2-y_3)^2=b^2 and (x_3-x_1)^2+(y_3-y_1)^2=c^2 then prove that 4|{:(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1):}|= (a+b+c)(b+c-a)(c+a-b)(a+b-c)

If (x_1-x_2)^2+(y_1-y_2)^2=a^2, (x_2-x_3)^2+(y_2-y_3)^2=b^2, (x_3-x_1)^2+(y_3-y_1)^2=c^2, and k|[x_1,y_1, 1],[x_2,y_2, 1],[x_3,y_3, 1]|=(a+b+c)(b+c-b)(c+a-b)xx(a+b-c) , then the value of k is 1 b. 2 c. 4 d. none of these

If A(x_(1),y_(1)),B(x_(2),y_(2)),C(x_(3),y_(3)) are the vertices of the triangle then show that:'

A=[[2,0,00,2,00,0,2]] and B=[[x_(1),y_(1),z_(1)x_(2),y_(2),z_(2)x_(3),y_(3),z_(3)]]

The centroid of the triangle formed by A(x_(1),y_(1)),B(x_(2),y_(2)),C(x_(3),y_(3)) is

If the points (x_(1),y_(1)),(x_(2),y_(2)), and (x_(3),y_(3)) are collinear show that (y_(2)-y_(3))/(x_(2)x_(3))+(y_(3)-y_(1))/(x_(3)x_(1))+(y_(1)-y_(2))/(x_(1)x_(2))=0