Home
Class 12
MATHS
Given that veca=(1,1,1), vec c=(0,1,-1)a...

Given that `veca=(1,1,1), vec c=(0,1,-1)and veca. vecb=3`. If `veca xx vecb=vec c`, then `vecb=`

A

`((1)/(2),-(1)/(2),(1)/(2))`

B

`((2)/(3),(2)/(3),(4)/(3))`

C

`((5)/(3),(2)/(3),(2)/(3))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

We have,
`veca xx vecb xx vec c`
`rArr" "veca xx(veca xx vecb)=veca xx vec c`
`rArr" "(veca. vecb)veca-(veca.veca)vecb=veca xx vec c`
`rArr" "3veca-3vecb=-2hati+hatj+hatk`
`rArr" "3hati+3hatj+3hatk-3hatb=-2hati+hatj+hatk`
`rArr" "vecb=(1)/(3)(5hati+2hatj+2hatk)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are two vectors such that |veca|=1, |vecb|=4, veca.vecb=2 . If vecc=(2veca xx vecb)-3vecb , then the angle between veca and vecc is

Let veca, vecb, vec c such that |veca| = 1 , |vecb| = 1 and |vec c | = 2 and if veca xx (veca xx vec c ) + vec b = 0 then find acute angle between veca and vec c

If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx vecb = 2(veca xx vecc),|veca|=|vecc|=1, |vecb|=4 and the angle between vecb and vecc is cos^(-1)(1//4) , then vecb-2vecc= lambda veca where lambda is equal to:

Let |veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3) . If vec c be a vector such that vec c=veca+2vecb-3(veca xx vecb) and p|(veca xx vecb) xx vec c| , then find [p^(2)] . (where [ ] represents greatest integer function).

Let veca vecb and vecc be three non-zero vectors such that veca + vecb + vecc = vec0 and lambda vecb xx veca xx veca + vecbxxvecc + vecc + veca = vec0 then find the value of lambda .

It is given that : vec x = (vec b xx vec c)/([veca vec b vec c]) ; vecy=(vec c vec a)/([veca vecb vecc]) ; vecz=(veca xx vecb)/([veca vecb vecc]) where a, b, c are non-coplanar vectors; show that x, y, z also form a non-coplanar system. Find the value of vecx*(veca+vecb)+vecy*(vecb+vecc)+vecz(vecc+veca) .

If vece_(1) = ( 1,1,1) and vece_(2) = ( 1,1,-1) and veca and vecb are two vectors that vece_(1) = 2veca +vecb and vece_(2) veca + 2vecb then angle between veca and vecb is

Let veca,vecb,vecc be three vectors such that veca ne vec0 and veca xx vecb=2veca xx vecc, |veca|=|vecc|=1,|vecb|=4 and |vecbxxvecc|=sqrt(15) . If vecb-2vecc=lambdaveca , then |lambda| is equal to :