Home
Class 12
MATHS
If underset(n to oo)(lim)(e(1-1/n)^(n)-1...

If `underset(n to oo)(lim)(e(1-1/n)^(n)-1)/(n^(alpha))`, exists and is equal to `l (l != 0)`, then the value of `12(l – alpha)` is :

A

4

B

3

C

6

D

7

Text Solution

Verified by Experts

The correct Answer is:
C

Let `n = 1/x`
`l=underset(x to 0)(lim)(e(1-x)^(1//x)-1)/((1//x)^(alpha)) = underset(x to 0)(lim) (e.e^((ln(1-x))/(x))-1)/(x^(-alpha))`
`l=underset(x to 0)(lim)((ln(1-x)/(x)+1)/(x^(-alpha))) = underset(x to 0)(lim) ((-x/2-(x^2)/3......)/(x^(-alpha)))`
For limit to exist `alpha = -1`
`l = -1/2`.
Promotional Banner

Similar Questions

Explore conceptually related problems

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is equal to

If underset(n to oo)lim (1-(10)^(n))/(1+(10)^(n+1))=- alpha/10, then the value of alpha is

underset( n rarr oo) ( "Lim") ( -3n + (-1)^(n))/(4n-(-1)^(n)) is

Let m and n be the two positive integers greater than 1 . If underset( alpha rarr 0 ) ( "lim")((e^(cos(alpha^(n)))-e)/(alpha^(m))) = -((e )/( 2)) then the value of ( m )/( n ) is

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n rarr oo) ((sin(n))/(n^(2))+log((en+1)/(n+e))) ^(n) is equal to