Home
Class 12
MATHS
Let f(x) = |(cosx,sinx,cosx),(cos2x,sin2...

Let `f(x) = |(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x)|` then the value of `f'(pi/2)` is :

A

0

B

`-12`

C

`4`

D

`12`

Text Solution

Verified by Experts

The correct Answer is:
C

Differentiate column wise, where
`Delta_(1) = -4: Delta_(2) = 0` and `Delta_(3) = 8]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

Let f(x)=|[cosx, sinx, cosx],[cos2x,sin2x,2cos2x],[cos3x,sin3x,3cos3x]|. Find f'(pi/2)

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is (i)pi/2 (ii)pi (iii)(3pi)/2 (iv)2pi

cos3x-cos2x=sin3x

"Let f(x) "=|{:(cos x" " sin x" " cos x),(cos 2x" "sin 2x" "2cos 2x),(cos 3x" "sin 3x" "3cos 3x):}|" Then find the vlue of "f'(0) and f'(pi//2).

"Let f(x) "=|{:(cos x" " sin x" " cos x),(cos 2x" "sin 2x" "2cos 2x),(cos 3x" "sin 3x" "3cos 3x):}|" Then find the vlue of "f'(0) and f'(pi//2).

If f(x)=int(sin2x(cos2x-cos4x))/(cos2x(cos2x+cos4x))dx then the value of f((pi)/(3))-f(0) is