Home
Class 12
MATHS
If sum(i=1)^(n) x(i)^(2) =300 and sum(i=...

If `sum_(i=1)^(n) x_(i)^(2) =300 and sum_(i=1)^(n) x_(i) =50` then possible value of n is :

A

4

B

6

C

7

D

10

Text Solution

Verified by Experts

The correct Answer is:
D

`sigma^(2) = (sumx_(i)^(2))/(n)-((sumx_(i))/(n))^(2)`
`=(300)/n -((50)/(n))^(2)=100/(n^2)(3n-25) gt C`
`implies n gt 25/3`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Ifx_(1),x_(2),....x_(n) are n observations such that sum_(i=1)^(n)(x_(i))^(2)=400 and sum_(i=1)^(n)x_(i)=100 then possible values of n among the following is (1)18(2)20(3)24(4)27

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

If sum_(i=1)^(2n)cos^(-1)x_(i)=0 , then sum_(i=1)^(2n)x_(i) is :

sum_(j=1)^(n)sum_(i=1)^(n)i=

If sum_(i=1)^(n)(x_(i)-2)=110, sum_(i=1)^(n)(x_(i)-5)=20 , then what is the mean?

let x_(1),x_(2)......x_(n) be n observations such that sum x_(i)^(2)=200 and sum x_(i)=40 then a possible value " of n among the following is (1) 4 (2) 5 (3) 6 (4) 10

In a group of data, there are n observations, x,x_(2), ..., x_(n)." If "sum_(i=1)^(n)(x_(i)+1)^(2)=9n and sum_(i=1)^(n)(x_(i)-1)^(2)=5n , the standard deviation of the data is

sum_(i=1)^(n)cos theta_(i)=n then sum_(i=1)^(n)sin theta_(i)