Home
Class 12
MATHS
int (x^(2)(6x^(6)+5x^(4)+3))/(sqrt(x^(4)...

`int (x^(2)(6x^(6)+5x^(4)+3))/(sqrt(x^(4)+x^(6)+1)) ` dx is
(Where 'c' is constant of integration)

A

`sqrt(x^(3)+x^(2)+1) +c`

B

`x^(3)sqrt(x^(6)+x^(4)+1) +c`

C

`2x^(2)sqrt(x^(6)+x^(4)+1) +c`

D

`sqrt(x^(6)+x^(4)+1) +c`

Text Solution

Verified by Experts

The correct Answer is:
B

`int (6x^(8)+5x^(6)+3x^(2))/(sqrt(x^(6)+x^(4)+1))dx`
`1/2int (12x^(11)+10x^(9)+6x^(5))/(sqrt(x^(12)+x^(10)+x^(6)))dx`
`1/2 (2sqrt(x^(12)+x^(10)+x^(6)))+c`
`x^(3)sqrt(x^(6)+x^(4)+1)+c`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

What is int(x^(4) +1)/(x^(2) + 1)dx equal to ? Where 'c' is a constant of integration

The integral int((2x-1)cossqrt((2x-1)^2+5))/(sqrt(4x^2-4x+6))dx is equal to :(where c is constant of integration)

The value of int e^(cos^(-1)x)*(((x+1)+sqrt(1-x^(2)))/((x+1)^(2)sqrt(1-x^(2))))dx is (where "c" is constant of integration)

The integral int(1)/(4sqrt((x-1)^(3)(x+2)^(5)) dx is equal to (where c is a constant of integration)

The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C is the constant of integration)

Let int(x^(2)-1)/(x^(3)sqrt(3x^(4)+2x^(2)-1))dx=f(x)+c where f(1)=-1 and c is the constant of integration.

If the integral I=int(x^(5))/(sqrt(1+x^(3)))dx =Ksqrt(x^(3)+1)(x^(3)-2)+C , (where, C is the constant of integration), then the value of 9K is equal to

int((x^(5)+x^(4)+x^(2))dx)/(sqrt(4x^(7)+5x^(6)+10x^(4)))