Home
Class 12
MATHS
If alpha, beta & gamma real numbers, the...

If `alpha, beta & gamma` real numbers, then value of `|(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma),cos(beta-gamma),1)|` is equal to

Text Solution

Verified by Experts

The correct Answer is:
`0.00`

Write 1 as `sin^(2)alpha+cos^(2)alpha+cos^(2)alpha` etc. to get
`|(sin^2alphacos^2alpha,cosbetacos alpha,cosgammacos alpha+singammasin alpha),(cos alpha cos beta+sinalphasin beta,cos^2beta+sin^2beta,cosgammacosbeta+singammasinbeta),(cosalphacosgamma+sinalphasingamma,cosbetacosgamma+sinbetasingamma,sin^2gamma+cos^2gamma)|`
can be factorized into 2 determinant
`|(cosalpha,sinalpha,x),(cosbeta,sinbeta,x),(cosgamma,singamma,x)||(cosalpha,cos beta,cos gamma),(sin alpha,sinbeta,sin gamma),(x,x,x)|=0`.
Promotional Banner

Similar Questions

Explore conceptually related problems

det [[1, cos (beta-alpha), cos (gamma-alpha) cos (alpha-beta), 1, cos (gamma-beta) cos (beta-alpha), cos (beta-gamma), 1]] =

If alpha,beta "and" gamma are real number without expanding at any stage prove that |{:(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma),cos(beta-gamma),1):}| =0.

Let D be the determinant given by D = |(1,cos (beta - alpha),cos (gamma - alpha)),(cos (alpha -beta),1,cos (gamma - beta)),(cos (alpha - gamma),cos (beta - gamma),1)| where alpha, beta and gamma are real number Statement -1: The value of D is zero Statement 2: The determinant D is expressible as the product of two determinant each equal to zero

If cos (beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=-(3)/(2) then

If alpha, beta, gamma are three real numbers and A=[(1,cos (alpha-beta),cos(alpha-gamma)),(cos (beta-alpha),1,cos (beta-gamma)),(cos (gamma-alpha),cos (gamma-beta),1)] then which of following is/are true ?

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

cos alphasin(beta-gamma)+cosbetasin(gamma-alpha)+cos gammasin(alpha-beta)=

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is