Home
Class 12
MATHS
Let f : R to R be a differentiable funct...

Let `f : R to R` be a differentiable function given by `f(x) =x^(3)-3x + 2020`. If g(x) is a continuous function defined by
`g(x) ={{:("Minimum" f(t),0 le t le x, 0 le x le 1),("Maximum" f(t), 1 lt t le x, 1 lt x le 2):}`
and m and M be the least and the greatest value of g(x) on [0,2] then which one of the following is correct?

A

M-m=2

B

m=2020

C

M=2022

D

m=2019

Text Solution

Verified by Experts

The correct Answer is:
C

`f(x) = 3x^(2) -3`
For `0 le x le 1`, f(x) is strictly decreasing
`rArr g(x) =x^(2) - 3x + 2020, 0 le x le 1`
For `1 lt x le 2`, f(x) is strictly increasing `rArr g(x) = xp^(3) - 3x + 2020, 1 lt x le 2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(3)-x^(2)+x+1 and g(x) be a function defined by g(x)={{:(,"Max"{f(t):0le t le x},0 le x le 1),(,3-x,1 le x le 2):} Then, g(x) is

Discuss the continuity of the function f, where f is defined by f(x){{:(3"," if 0 le x le 1),(4"," if 1lt x lt 3 ),(5"," if 3 le x le 10):}

Consider the function f:(0,2)rarr R defined by f(x)=(x)/(2)+(2)/(x) and the function g(x) defined by g(x)={(min f(t) , 0 lt t le x, 0 lt x le1), ((3)/(2)+x,1 lt x lt 2):} .Then

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x)={:{(3", if " 0 le x le 1),(4", if " 1 lt x lt 3),(5", if " 3 le x le 10):} , then

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

Let f (x)= [{:(x ^(2)+a,0 le x lt 1),( 2x+b,1le x le 2):}and g (x)=[{:(3x+b,0 le x lt 1),(x ^(3), 1 le x le 2):} If derivative of f(x) w.r.t. g (x ) at x =1 exists and is equal to lamda, then which of the followig is/are correct?

Let f : [ 0, oo) to [ 0,3] be a function defined by f(x) = {{:(max { sin t : 0 le t le x}" , " 0 le x le pi),( 2 + cos x", " x gt pi ):} Then which of the following is true ?