Home
Class 12
MATHS
lim(x->0)(e^(x^(2))-cos x )/sin^2 xis eq...

`lim_(x->0)(e^(x^(2))-cos x )/sin^2 x`is equal to

A

3

B

`3//2`

C

`5//4`

D

2

Text Solution

Verified by Experts

The correct Answer is:
B

`underset(x to 0)(lim)(e^(x^2)-cosx)/(sin^2 x)= underset(x to 0)(lim)(2xe^(x^2)+sinx)/(2sinx cosx)`
(using L' Hospital Rule)
`underset(x to 0)(lim)((x)/(sinx)e^(x^2)+1/2)1/(cosx)=1+1/2=3/2`
OR
`underset(x to 0)(lim)((e^(x^2)-1)+(1-cos x))/(x^(2)((sinx)/(x))^(2))`
`= (1+1//2)/((1)^(2)) = 3//2`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

lim_(x rarr0)(e^(x^(2))-cos x)/(sin^(2)x) is equal to

underset(x to 0)lim (e^(x^(2))-cos x)/(sin^(2) x) is equal to :

lim_(x->0) (1-cos x)/(sin^2 x)

if lim_(x rarr oo)(e^(x^(2))-cos x)/(sin^(2)x) is

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)=