Home
Class 12
MATHS
If int(0)^(2Pi) sin^(2020) x.cos^(2019) ...

If `int_(0)^(2Pi) sin^(2020) x.cos^(2019) x dx = 1` then the value of f(I), (where `f(x) = x cos(I) – x^(2) sin2(I)`) is equal to:-

A

0

B

`(Pi)/(4sqrt(2))-(Pi^2)/4`

C

1

D

`cos 1 - sin 2`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `p(x) = sin^(2020)x.cos^(2019)x`
`implies p(2pi-x)=p(x)`
`implies I = 2.int_(0)^(pi) sin^(2020)(pi-x).cos^(2019)(pi-x) dx`
`implies I = -2int_(0)^(pi)sin^(2020)x cos^(2019)x dx`
`implies 3I = 0 or I = 0 implies f (I) = 0`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If I=int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx, then the value of I is

I= int_0^(pi)(x sin x)/(1+cos^(2)x)dx

I=int(sin^(2)x-cos^(2)x)/(sin^(2)x*cos^(2)x)dx

If F(x)=int(x+sin x)/(1+cos x)dx and F(0)=0 then the value of f((pi)/(2)) is

If F(x)=int((1+sin x)/(1+cos x))dx and F(0)=0 then the value of F(pi/2) is

If I=int_(0)^((3 pi)/(5))(1+x)sin x+(1-x)cos x)dx then value of (sqrt(2)-1)I is

Let I=int_(0)^(2pi)(xsin^(8)x)/(sin^(8)x+cos^(8)x)dx , then I is equal to :