Home
Class 12
MATHS
The value of int(0)^(n//2)(sin^(3)x)/(si...

The value of `int_(0)^(n//2)(sin^(3)x)/(sinx+cos x)` dx is

A

`(pi-2)/4`

B

`(pi-2)/8`

C

`(pi-1)/4`

D

`(pi-1)/2`

Text Solution

Verified by Experts

The correct Answer is:
C

`I = int_(0)^(pi//2)(sin^(3)x)/(sinx+cosx)dx` ……..(1)
By `p 4 int_(0)^(a) fxdx = int_(0)^(a) f(a-x)dx`
`I = int_(0)^(pi//2) (cos^(3)x)/(cos x+sinx) dx` …….(2)
`2I = int_(0)^(pi//2)((sin^(3)x+cos^3x))/((sin x + cos x)) dx`
`= int_(0)^(pi//2) (sin^(2)x +cos^(2)x-sinxcosx)dx`
`int_(0)^(pi//2)(1-(sin2x)/(2))dx=(x+(cos 2x)/(4))_(0)^(pi//2)`
`2I = ((pi)/(2) + (-1)/(4))-(0+1/4) = (pi)/2 - 1/2`
`:. I = ((pi-1)/(4))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi/2)(sin^(3)x)/(sinx+cos x) dx is

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

int_(0)^((pi)/2)(cos^(3)x)/(sinx+cosx)dx

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

If int_(0)^(oo)(sinx)/(x)dx=k , then the value of int_(0)^(oo)(sin^(3)x)/(x)dx is equal to

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2+cosx|sinx)dx is equal to

int_(0)^((pi)/(2))(sin^(3)x)/(sin^(3)x+cos^(3)x)dx

int_(0)^(pi//2)(sin^(n)x)/((sin^(n)x+cos^(n)x))dx=?