Home
Class 12
MATHS
The angle of elevation of top of a chimn...

The angle of elevation of top of a chimney from a point on ground is `30^(@)`. After walking 50 metre towards chimney angle becomes `60^(@)`. Then height of chimney is :-

A

`25 m`

B

`25 sqrt(3) m`

C

`25 sqrt(2) m`

D

`20 m`

Text Solution

Verified by Experts

The correct Answer is:
B


`In Delta ABC`
`tan 30^(@) = h/(x+50)`
`sqrt(3) h = x+50` ……(i)
In `Delta ABD`
`tan 60^(@) = h//x`
`h= sqrt(3)x`……..(2)
form (1) and (2)
`h = 25sqrt(3)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The angle of elevation of an object on a hill from a point on the ground is 30^@ . After walking 120 metres the elevation of the object is 60^@ . The height of the hill is

The angle of elevation of the top of a tower at a point G on the ground is 30^(@) . On walking 20 m towards the tower the angle of elevation becomes 60^(@) . The height of the tower is equal to :

The angle of elevation of the top of a tower at any point on the ground is 30^@ and moving 20 metres towards the tower it becomes 60^@ . The height of the tower is

The angle of elevation of the top of a tower from a point on the ground is 30^(@) . After walking 45 m towards the tower, the angle of elevation becomes 45^(@) . Find the height of the tower.

The angle of elevation of the top of a tower from a point on the ground is 30^(@) . After walking 40sqrt3 m towards the tower, the angle of elevation becomes 60^(@) . Find the height of the tower.