Home
Class 12
MATHS
If (1 + x)^n = C0+C1x+C2x^2 + ... + Cnx^...

If `(1 + x)^n = C_0+C_1x+C_2x^2 + ... + C_nx^n`,then for n odd,`C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2`, is equal to

A

`.^(2n)C_(n)`

B

`(-1)^(n//2).^(n)C_(n//2)`

C

0

D

`.^(2n)C_(n-1)`

Text Solution

Verified by Experts

The correct Answer is:
C

`(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…..+C_(1)x^(n)+….+C_(n)X^(n)`
& `(x-1)^(n)=C_(0)x^(n)-C_(1)x^(n-1)+C_(2)x^(n-2)+……+(-1)^(n)C_(n)`
Multiplying and compare coefficient of `x^(n)`
`C_(o)^(2)-C_(1)^(2)+C_(2)^(2)-C_(3)^(2)+…..+(-1)^(n)C_(n)^(2)=(-1)^(n//2) .^(n)C_(n//2)`
If n is odd then
`C_(o)^(2)-C_(1)^(2)+C_(2)^(2)-C_(3)^(2)+....+(-1)^(n)C_(n)^(2)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n) then for n odd ,C_(0)^(2)-C_(1)^(2)+C_(2)^(2)-C_(3)^(2)+...+(-1)C_(n)^(2), is equal to

If C_0,C_1,C_2,....,C_n are coefficients in the binomial expansion of (1+x)^n and n is even, then C_0^2-C_1^2+C_2^2-C_3^2 + ... +(-1) C_n^2, is equal to

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1+x)^n = C_0 + C_1 x + C_2x^2 + …………+C_n x^n , find the value of C_0 - 2C_1 + 3C_2 - ……….+ (-1)^n (n+1) C_n

If (1+x)^(n) = C_(0)+C_(1)x + C_(2) x^(2) +...+C_(n)x^(n) then C_(0)""^(2)+C_(1)""^(2) + C_(2)""^(2) +...+C_(n)""^(2) is equal to

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + 2C_1 + ….. + 2 ""^nC_n = 3^n

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + ... + C_(n) x^(n) , then value of C_(0)^(2) + 2C_(1)^(2) + 3C_(2)^(2) + ... + (n + 1) C^(2)n is

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .