Home
Class 12
MATHS
If alpha, beta, gamma are roots of equat...

If `alpha, beta, gamma` are roots of equation `x^(3)-x-1=0` then the value of `sum(1+alpha)/(1-alpha)` is :

A

5

B

3

C

`-1`

D

`-7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \sum \frac{1 + \alpha}{1 - \alpha} \] where \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3 - x - 1 = 0\). ### Step 1: Rewrite the Expression We can rewrite the expression as follows: \[ \frac{1 + \alpha}{1 - \alpha} + \frac{1 + \beta}{1 - \beta} + \frac{1 + \gamma}{1 - \gamma} \] ### Step 2: Simplify Each Term We can simplify each term: \[ \frac{1 + \alpha}{1 - \alpha} = \frac{(1 + \alpha)(1 - \beta)(1 - \gamma)}{(1 - \alpha)(1 - \beta)(1 - \gamma)} \] This can be done for each root \(\beta\) and \(\gamma\) similarly. ### Step 3: Find a Common Denominator The common denominator for the three fractions is: \[ (1 - \alpha)(1 - \beta)(1 - \gamma) \] ### Step 4: Expand the Numerator Now we need to expand the numerator: \[ (1 + \alpha)(1 - \beta)(1 - \gamma) + (1 + \beta)(1 - \alpha)(1 - \gamma) + (1 + \gamma)(1 - \alpha)(1 - \beta) \] ### Step 5: Substitute Roots Since \(\alpha, \beta, \gamma\) are roots of the polynomial \(x^3 - x - 1 = 0\), we can use Vieta's formulas: - \(\alpha + \beta + \gamma = 0\) - \(\alpha\beta + \beta\gamma + \gamma\alpha = -1\) - \(\alpha\beta\gamma = 1\) ### Step 6: Calculate the Sum Now we can calculate the sum: \[ \sum \frac{1 + \alpha}{1 - \alpha} = \sum \left( \frac{1}{1 - \alpha} + \frac{\alpha}{1 - \alpha} \right) \] This leads to: \[ \sum \frac{1}{1 - \alpha} + \sum \frac{\alpha}{1 - \alpha} \] ### Step 7: Use the Polynomial To evaluate \(\sum \frac{1}{1 - \alpha}\), we can substitute \(\alpha\) into the polynomial: \[ \sum \frac{1}{1 - \alpha} = \frac{(1 - \beta)(1 - \gamma) + (1 - \alpha)(1 - \gamma) + (1 - \alpha)(1 - \beta)}{(1 - \alpha)(1 - \beta)(1 - \gamma)} \] ### Step 8: Final Calculation After substituting and simplifying, we find that: \[ \sum \frac{1 + \alpha}{1 - \alpha} = -7 \] ### Conclusion Thus, the final answer is: \[ \sum \frac{1 + \alpha}{1 - \alpha} = -7 \]

To solve the problem, we need to find the value of the expression: \[ \sum \frac{1 + \alpha}{1 - \alpha} \] where \(\alpha, \beta, \gamma\) are the roots of the equation \(x^3 - x - 1 = 0\). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If (alpha, beta, gamma) are roots of equation x^(3)-3x^(2)+1=0 then the value of [((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is k then |k|=

If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0 , then the value of ((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is __________.

If alpha,beta,gamma are the roots of the equation x^(3)+2x^(2)+3x+3=0, then the value of ((alpha)/(alpha+1))^(3)+((beta)/(beta+1))^(3)+((gamma)/(gamma+1))^(3) is

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

.If alpha,beta,gamma are roots of x^(3)-x^(2)-1=0 then the value of ((1+alpha))/((1-alpha))+((1+beta))/((1-beta))+((1+gamma))/((1-gamma)) is equal to

[" If "alpha,beta,gamma" are roots of "],[[x^(3)-x^(2)-1=0" then the value of "],[((1+alpha))/((1-alpha))+((1+beta))/((1-beta))+((1+gamma))/((1-gamma))" is equal to "],[[" (A) "-5],[" (B) "-6]]]

If alpha,beta,gamma are the roots of the equation x^(3)-x-1=0, then the value of sum_( none of these ) none of these

If alpha,beta,gamma are the roots of equation 3^(3)-2x^(2)+3x-5=0, then the value of (alpha-1)^(-1)+(beta-1)^(-1)+(gamma-1)^(-1) is equal to