Home
Class 12
MATHS
If a^(2) + b^(2) + c^(3) + ab + bc + ca ...

If `a^(2) + b^(2) + c^(3) + ab + bc + ca le 0` for all, `a, b, c in R`, then the value of the determinant
`|((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))|`, is equal to

A

65

B

`a^(2)+b^(2)+c^(2)+31`

C

`4(a^(2)+b^(2)+c^(2))`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A

`a+b=0 , b+c = 0, c+a = 0`
`a=b=c=0`
`rArr |(4,0,1),(1,4,0),(0,1,4)|=65`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |{:(1,a, a^(2)-bc),(1, b, b^(2)-ca),(1, c, c^(2)-ab):}| is…..

The value of determinant |{:(a^(2),a^(2)-(b-c)^(2),bc),(b^(2),b^(2)-(c-a)^(2),ca),(c^(2),c^(2)-(a-b)^(2),ab):}| is

If a^2+b^2+c^2+ab+bc+ca<=0 AA a, b, c in R then find the value of the determinant |[(a+b+2)^2, a^2+b^2, 1] , [1, (b+c+2)^2, b^2+c^2] , [c^2+a^2, 1, (c+a+2)^2]| : (A) abc(a^2 + b^2 +c^2) (B) 0 (C) a^3+b^3+c^3 + 3abc (D) 65

|[bc,ca,ab],[(b+c)^(2),(c+a)^(2),(a+b)^(2)],[a^(2),b^(2)c^(2)]|

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

If ab + bc + ca = 0, then what is the value of (a^(2))/(a^(2) - bc) + (b^(2))/(b^(2)-ca) + (c^(2))/(c^(2) - ab) ?