Home
Class 12
MATHS
If int\ x^5\ e^(-4x^3)dx=(1)/(48)e^(-4x^...

If `int\ x^5\ e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c`, where `c` is constant of intergration then `f(x)` equals to (a) `-4x^3-1` (b) `-1-2x^3` (c) `4x^3+1` (d) `1-2x^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c , where c is contant of intergration then f(x) equals to (a) -4x^3-1 (b) -1-2x^3 (c) 4x^3+1 (d) 1-2x^3

If intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c , where c is contant of intergration then f(x) equals to (a) -4x^3-1 (b) -1-2x^3 (c) 4x^3+1 (d) 1-2x^3

If intx^5e^(-4x^3)dx=(1)/(48)e^(-4x^3)(f(x))+c , where c is contant of intergration then f(x) equals to (a) -4x^3-1 (b) -1-2x^3 (c) 4x^3+1 (d) 1-2x^3

If int lambda x^(5)backslash e^(-4x^(3))dx=(1)/(48)e^(-4x^(3))(f(x))+c where c is constant of intergration then f(x) equals to (a)-4x^(3)-1( b) -1-2x^(3)(c)4x^(3)+1(d)1-2x^(3)

If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to (here C is a constant of intergration)

Let int(x^(2)-1)/(x^(3)sqrt(3x^(4)+2x^(2)-1))dx=f(x)+c where f(1)=-1 and c is the constant of integration.

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to