Home
Class 12
MATHS
sqrt(x) +y=7, x+sqrt(y)=11...

`sqrt(x) +y=7, x+sqrt(y)=11`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(x)+y=11,x+sqrt(y)=7

sqrt x + y = 7 x+ sqrty = 11

sqrt(x/y) + sqrt(y/x) = 6

sqrt x+ y =7 and sqrt y +x=11

If 0

If 0 (a) sqrt(x)-\ sqrt(y)=\ sqrt(x-y) (b) sqrt(x)+\ sqrt(x)=\ sqrt(2x) (c) xsqrt(y)=ysqrt(x) (d) sqrt(x y)=\ sqrt(x)\ sqrt(y)

Rationalise the denominator: (a) (1)/(root(3)(3) + root(3)(2)) , (b) (2)/(sqrt5 + sqrt3 + sqrt2) , (c) (x^(2))/(sqrt(x^(2) + y^(2)) - y) , (d) (1)/(sqrt6 + sqrt5 - sqrt11) (e) (sqrt(x + 2y) - sqrt(x -2y))/(sqrt(x + 2y) + sqrt(x - 2y)) , (f) (sqrt10 + sqrt5 - sqrt3)/(sqrt10 - sqrt5 + sqrt3)

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

If x, y, z are in A.P then 1/(sqrt(x) + sqrt(y)) , 1/(sqrt(z) + sqrt(x)) , 1/(sqrt(y) + sqrt(z)) are in

x sqrt(x)+y sqrt(y)=a sqrt(a) then find (dy)/(dx)