Home
Class 12
MATHS
If ysqrt(1-x^2)+xsqrt(1-y^2)=1 show tha...

If `ysqrt(1-x^2)+xsqrt(1-y^2)=1` show that `(dy)/(dx)=-sqrt((1-y^2)/(1-x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ysqrt(1-x^2)+xsqrt(1-y^2)=1," prove that "(dy)/(dx)= - sqrt((1-y^2)/(1-x^2))dot

If ysqrt(1-x^2)+xsqrt(1-y^2)=1 , then prove that dy/dx=- sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y) ,show that dy/dx=sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2) = a(x-y), show that dy/dx = sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If ysqrt(1-x^(2)) +xsqrt( 1-y^(2)) =1,then (dy)/(dx)=

If ysqrt(1-x^(2)) +xsqrt( 1-y^(2)) =1,then (dy)/(dx)=