Home
Class 12
MATHS
If tan(A+B)=3 tan A , prove that (a) sin...

If `tan(A+B)=3 tan A` , prove that (a) `sin(2A+B)=2sin B`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan(A+B)=3 tan A , prove that sin(2A+B)=2sin B

If tan(A+B)=3tanA , prove that sin(2A+B)=2sinB

If tan (A+B) = 3 tan A , "show that" sin (2A +2B) + sin 2A = 2 sin 2 B

If 2 tan A = 3 tan B then prove that sin ( A + B) = 5 sin ( A-B) .

If2tan A=3tan B, then prove that sin(A+B)=5sin(A-B)

Prove that: If tan A=x tan B, prove that (sin(A-B))/(sin(A+B))=(x-1)/(x+1)

i) If tan (A+B) = n tan (A-B), prove that: (n+1)/(n-1) = (sin2A)/(sin2B)

i) If tan (A+B) = n tan (A-B), prove that: (n+1)/(n-1) = (sin2A)/(sin2B)

If tan(A+B)=ntan(A_B) then prove that (n+1)/(n-1)=(sin2A)/(sin2B)