Home
Class 11
PHYSICS
A force vec(F)=(5hat(i)+3hat(j)+2hat(k))...

A force `vec(F)=(5hat(i)+3hat(j)+2hat(k))N` is applied over a particle which displaces it from its origin to the point `vec(r)=(2hat(i)-hat(j))m`. The work done on the particle in joules is-

Promotional Banner

Similar Questions

Explore conceptually related problems

A vec(F) = (5hat(i) +3hat(j) +2hat(k))N is applied over a particle which displaces it from its origin to the point vec(r ) = (2 hat(i) - hat(j))m . The work done on the particle in joule is ……….

A force vec(F) = (5hat(i) + 3hat(j)) N is applied over a particle which displaces it from its origin to the point vec(r ) = (2hat(i) - 1hat(j)) meter. The work done on the particle is :

A force vec(F) = (5hat(i) + 3hat(j)) N is applied over a particle which displaces it from its origin to the point vec(r ) = (2hat(i) - 1hat(j)) meter. The work done on the particle is :

A force vec(F) = (2hat(i) - 3hat(j) +7hat(k)) N is applied on a particle which displaces it by vec(S) = (4hat(i)+5hat(j) +hat(k)) . Find the work done on the particle .

A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3 hat(k)) to the point B(3hat(i) - hat(j)+5hat(k)) . The work done by the force will be

A force vec(F)=2hat(i)-3hat(j)+7hat(k) (N) acts on a particle which undergoes a displacement vec(r )=7hat(j)+3hat(j)-2hat(k)(m) . Calculate the work done by the force.

A force vec(F)=2hat(i)-3hat(j)+7hat(k) (N) acts on a particle which undergoes a displacement vec(r )=7hat(j)+3hat(j)-2hat(k)(m) . Calculate the work done by the force.

A force vec(F) = (2 hat(i) + 3 hat(j) + 4 hat(k)) N is applied to a point having position vector vec(r) = (3 hat(i) + 2 hat(j) + hat(k)) m. Find the torque due to the force about the axis passing through origin.

A force vec(F) = (2 hat(i) + 3 hat(j) + 4 hat(k)) N is applied to a point having position vector vec(r) = (3 hat(i) + 2 hat(j) + hat(k)) m. Find the torque due to the force about the axis passing through origin.