Home
Class 12
MATHS
tan(cos^(-1)x)=sin(cot^(-1)((1)/(2)))...

tan(cos^(-1)x)=sin(cot^(-1)((1)/(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : cos(tan^(-1)x)=sin(cot^(-1)""(3)/(4))

tan(Cos^(-1)1//x)=sin(Cot^(-1)1//2),"if "xne0 then x =

If: cos(tan^(-1)x)=sin (cot^(-1).(3)/(4)), then : x =

Slove: tan(cos^-1x)=sin(cot^-1""1/2)

Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((1+x^2)/(2+x^2) .

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

(d) / (dx) (cos ^ (2) (tan ^ (- 1) (sin (cot ^ (- 1) x))))

Solve cos(tan^-1x) = sin(cot^-1 (3/4))

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=