Home
Class 10
MATHS
If (a^2+b^2)^3 = (a^3+b^3)^2 and ab!=0 t...

If `(a^2+b^2)^3 = (a^3+b^3)^2` and `ab!=0` the numerical value of `a/b+b/a` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2) and ab ne 0 then the numerical value of (a)/(b)+ (b)/(a) is equal to-

If (a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2) and ab ne 0 then the numerical value of (a)/(b)+ (b)/(a) is equal to-

If (a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2) and ab ne 0 then the numerical value of (a)/(b)+ (b)/(a) is equal to-

If (a^2 + b^2)^3 = (a^3 + b^3)^2 and ab != 0 then (a/b + b/a)^6 is equal to :

If (a^2+b^2)^3=(a^3+b^3)^2 and ab ne 0 then (a/b+b/a)^6 is equal to :

If a^(3) + b^(3) = 218 and a + b = 2 , then the value of ab is :

If (a ^(2) + b ^(2)) ^(3) = (a ^(3) + b ^(3)) ^(2) and ab ne 0, then ((a)/(b) + (b)/(a)) ^(6) is equal to

(a^3-b^3)/(a^2+b^2+ab)=

If ab=2a + 3b, a>0, b>0, then the minimum value of ab is