Home
Class 12
MATHS
" 41.If "|vec a|=a" and "|vec b|=b," pro...

" 41.If "|vec a|=a" and "|vec b|=b," prove that "((vec a)/(a^(2))-(vec b)/(b^(2)))^(2)=((vec a-vec b)/(ab))^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If |a|=a and |vec b|=b, prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))^(2)=((vec a-vec b)/(ab))^(2)

If |vec a|=vec a and |vec b|, prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))^(2)=((vec a-vec b)/(ab))^(2)

If |vec a|=a and |vec b|=b then prove that ((vec a)/(a^(2))-(vec b)/(b^(2)))=((vec a-vec b)/(ab))^(2)

If | vec a|= a\ a n d\ | vec b|=b, prove that ( vec a/(a^2)- vec b/(b^2))^2=(( vec a- vec b)/(a b))^2

If | vec a|=a and | vec b|=b , prove that ( vec a/(a^2)- vec b/(b^2))^2 = (( vec a- vec b)/(a b))^2 .

For any two vectors vec a and vec b, prove that ((vec a) / (| vec a | ^ (2)) - (vec b) / (| vec b | ^ (2))) ^ (2) = ((vec a-vec b) / (| vec a || vec b |)) ^ (2)

Prove that (vec a × vec b)^(2) = a^(2)b^(2)-(vec a . vec b)^(2) .

If vec a and vec b are orthogonal vectors, prove that (vec a + vec b)^(2) = (vec a - vec b)^(2) .

Prove that |vec(a) xx vec(b)| = sqrt(a^(2)b^(2) -(vec(a) -vec(b))^(2))

For any two vectors vec a and vec b ,prove that (vec a xxvec b)^(2)=|vec a|^(2)|vec b|^(2)-(vec a*vec b)^(2)