Home
Class 11
MATHS
Let f(x) = x+f(x-1) where xepsilonR. If ...

Let `f(x) = x+f(x-1)` where `xepsilonR`. If `F(0)=1` find `f(100)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x+f(x-1) for AA x in R.If f(0)=1, find f(100)

Let f(x)=x+f(x-1) for AAx in R . If f(0)=1,f i n d \ f(100) .

Let f(x)=x+f(x-1) for AAx in R . If f(0)=1,f i n d \ f(100) .

Let f(x)=x+f(x-1)forAAx in RdotIff(0)=1,fin df(100)dot

Let f : W-> W be a given function satisfying f(x) = f(x-1)+f(x-2) for x<=2 .If f(0)=0 and f(1)=1 , ther find the value of f(2) + f(3) + f(4) + f(5) + f(6) .

Let f:W rarr W be a given function satisfying f(x)=f(x-1)+f(x-2) for x<=2. If f(0)=0 and f(1)=1, ther find the value of f(2)+f(3)+f(4)+f(5)+f(6)

Let f(x)=x(x-1)(x-2) , x in [0,2] Find f(0) and f(2)

Let the function f be defined by f (x) = |x-1| -1/2, 0 le x le 2, f (x +2 ) = f (x) for all x in R. Evaluate (i) int _(0) ^(100) f (x) dx (ii) int _(0) ^(1)| f(2x ) |dx

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2) (0) = 1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R . then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .