Home
Class 12
MATHS
If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/pi]-3...

If `f(x)=(2x(sinx+tanx))/(2[(x+2pi)/pi]-3)` then it is (i) Odd (ii) Even (iii) many-one (iv) one-one

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(2x(sin x+tan x))/(2[(x+2 pi)/(pi)]-3) then it is (i) odd (ii) Even (iii) many-one (iv) one-one

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

Show the function, f(x)=(2x(sinx+tanx))/(2[(x+21pi)/pi]-41) is symmetric about origin.

Show the function, f(x)=(2x(sinx+tanx))/(2[(x+21pi)/pi]-41) is symmetric about origin.

Show the function, f(x)=(2x(sinx+tanx))/(2[(x+21pi)/pi]-41) is symmetric about origin.

f:R^(+)rarr[2,oo] and f(x)=2+3x^(2), then f(x) is (i)one-one (ii)into (iii)many-one (iv) onto

Show that the function f(x)=(2x(sinx+tanx))/(2[(x+21pi)/pi]-41) is symmetric about origin.

A function f(x)=(2x(sin x))/(2[(x+21 pi)/(pi)]-41) (1) Even function (3) Neither even nor odd ( 4 ) f(0)=1

Let f(x)=|x|+|sinx|, x in (-pi/ 2,3pi/2). Then , f is