Home
Class 12
MATHS
20*sin^(6)theta+cos^(6)theta=1-3sin^(2)t...

20*sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(6)theta+cos^(6)theta=1-3sin^(2)thetacos^(2)theta

sin^(6)theta=cos^(6)theta=1-3sin^(2)thetacos^(2)theta

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta.cos^(2)theta.

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

Prove that sin^(6)theta+cos^(6)theta+3sin^(2)thetacos^(2)theta=1

Prove that cos^(6)theta+sin^(6)theta=1-3sin^(2)theta cos^(2)theta

The value of the expression sin^(6)theta+cos^(6)theta+3sin^(2)theta*cos^(2)theta equals

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is