Home
Class 12
MATHS
The derivative of f(x) =int(x^2)^(x^3)1...

The derivative of `f(x) =int_(x^2)^(x^3)1/(log_e(t))dt,(x>0)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

The least value of the function F(x) = int_(x)^(2) log_(1//3) t dt, x in [1//10,4] is at x=

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)

f(x)= int_(0)^(x) ln ((1-t)/(1+t))dt rArr

Let f(x) be a derivable function satisfying f(x)=int_(0)^(x)e^(t)sin(x-t)dt and g(x)=f'(x)-f(x) Then the possible integers in the range of g(x) is