Home
Class 12
MATHS
lim(n - >oo) {1/(2n+1)+1/( 2n +2) +........

`lim_(n - >oo) {1/(2n+1)+1/( 2n +2) +....... 1/(2n +n)}` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

lim_(n->oo){1/(1-n^2)+2/(1-n^2)+......n/(1-n^2)} is equal to (a) 0 (b) -1/2 (c) 1/2 (d) none of these

lim_(n rarr oo) [1/(2n+1)+1/(2n+2)+…….+1/(2n+n)]=

lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to